extension | φ:Q→Aut N | d | ρ | Label | ID |
(C32xC12).1C4 = C33:4M4(2) | φ: C4/C1 → C4 ⊆ Aut C32xC12 | 48 | 4 | (C3^2xC12).1C4 | 432,636 |
(C32xC12).2C4 = C3xC32:2C16 | φ: C4/C1 → C4 ⊆ Aut C32xC12 | 48 | 4 | (C3^2xC12).2C4 | 432,412 |
(C32xC12).3C4 = C33:4C16 | φ: C4/C1 → C4 ⊆ Aut C32xC12 | 48 | 4 | (C3^2xC12).3C4 | 432,413 |
(C32xC12).4C4 = C3xC3:S3:3C8 | φ: C4/C1 → C4 ⊆ Aut C32xC12 | 48 | 4 | (C3^2xC12).4C4 | 432,628 |
(C32xC12).5C4 = C33:7(C2xC8) | φ: C4/C1 → C4 ⊆ Aut C32xC12 | 48 | 4 | (C3^2xC12).5C4 | 432,635 |
(C32xC12).6C4 = C3xC32:M4(2) | φ: C4/C1 → C4 ⊆ Aut C32xC12 | 48 | 4 | (C3^2xC12).6C4 | 432,629 |
(C32xC12).7C4 = C33:18M4(2) | φ: C4/C2 → C2 ⊆ Aut C32xC12 | 216 | | (C3^2xC12).7C4 | 432,502 |
(C32xC12).8C4 = C32xC4.Dic3 | φ: C4/C2 → C2 ⊆ Aut C32xC12 | 72 | | (C3^2xC12).8C4 | 432,470 |
(C32xC12).9C4 = C3xC12.58D6 | φ: C4/C2 → C2 ⊆ Aut C32xC12 | 72 | | (C3^2xC12).9C4 | 432,486 |
(C32xC12).10C4 = C32xC3:C16 | φ: C4/C2 → C2 ⊆ Aut C32xC12 | 144 | | (C3^2xC12).10C4 | 432,229 |
(C32xC12).11C4 = C3xC24.S3 | φ: C4/C2 → C2 ⊆ Aut C32xC12 | 144 | | (C3^2xC12).11C4 | 432,230 |
(C32xC12).12C4 = C33:7C16 | φ: C4/C2 → C2 ⊆ Aut C32xC12 | 432 | | (C3^2xC12).12C4 | 432,231 |
(C32xC12).13C4 = C3xC6xC3:C8 | φ: C4/C2 → C2 ⊆ Aut C32xC12 | 144 | | (C3^2xC12).13C4 | 432,469 |
(C32xC12).14C4 = C6xC32:4C8 | φ: C4/C2 → C2 ⊆ Aut C32xC12 | 144 | | (C3^2xC12).14C4 | 432,485 |
(C32xC12).15C4 = C2xC33:7C8 | φ: C4/C2 → C2 ⊆ Aut C32xC12 | 432 | | (C3^2xC12).15C4 | 432,501 |
(C32xC12).16C4 = M4(2)xC33 | φ: C4/C2 → C2 ⊆ Aut C32xC12 | 216 | | (C3^2xC12).16C4 | 432,516 |